If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+3x-27=0
a = 10; b = 3; c = -27;
Δ = b2-4ac
Δ = 32-4·10·(-27)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-33}{2*10}=\frac{-36}{20} =-1+4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+33}{2*10}=\frac{30}{20} =1+1/2 $
| 8-4x=x-9 | | 3x+7–2=8 | | 9^x=7.4 | | 3x+2(x+3,)=21 | | -1/3p+1=40 | | a2=18 | | 18) 5n-5=n+10 | | |(3x-3)/4|=6 | | 17) 9n+1=6n+9 | | 16) 6n+5=4n+18 | | 3(x+17)+15=7x-1 | | 5(m+4)=3(2m+1) | | 15) 3n+3=2n+8 | | (15g+3)+3g=180 | | 9p-9+9-2p=7p-0 | | 10) 5n-10=3n+50 | | 3|x|−6=15 | | 9) 11n-9=5n+27 | | 5) 6n+8=2n+36 | | 33+7y-23=180 | | 71-2x=35-x | | 4(2x-3)=104 | | 9s-3+9-9s=0s+6 | | 16x+5×8^x=0 | | -2x-1/3=x+4/2 | | x=(x+4)(x−4)+16 | | 1300/35=36/7s | | 3.4-x-2.x-1=x+20 | | 2(m-4)=m+12 | | 100b^2-4=0 | | 18x1/2x=6(3x+25) | | 2m-3(m-1)=4(m+3) |